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Need for a new theory
of solid mechanics
Computational Physics & Mechanics
• Classical formulation uses partial differential
equations.

• The necessary spatial derivatives may not exist
everywhere in the body.

• Example: Fracture (  is discontinuous)

• Special techniques (of which there are many) are
needed to model cracks in the classical theory.

Goal

Develop a model in which exactly the same equations
hold everywhere, regardless of any discontinuities.

♦ To do this, get rid of spatial derivatives.
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Basic idea of the
peridynamic theory
Computational Physics & Mechanics
• Equation of motion:

where  is a functional.
• A useful special case:

.

where  is any point in the reference configuration, and
 is a vector-valued function.

More concisely:
.

•  is the pairwise force
function. It contains all
constitutive information.

• It is convenient to assume that
 vanishes outside some

horizon .
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Microelastic materials

A material is microelastic if, holding any fixed, the work done
by  in moving any  around a closed path is 0.

In this case, Stokes’ Theorem implies:
♦ There exists a scalar-valued function , called the

micropotential, such that

where

Can further show:

♦ There exists a scalar function  such that
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Interpretation of
microelasticity

So the micropotential can depend only on:
• the current separation distance
• the reference separation vector .

Meaning: any two points  and  are connected by a (possibly
nonlinear) spring.

The spring properties can depend on the reference separation
vector.

• Can prove: “microelastic implies macroelastic”:
• Work done by external forces is stored in a recoverable

form
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Some material models
Computational Physics & Mechanics
• Microelastic
♦ Each pair of particles

is connected by a
spring.

♦ Linear
♦ Bilinear
♦ etc.

• Brittle microelastic
♦ Springs break

irreversibly

• Microplastic
♦ Permanent bond

deformation upon
unloading.

• All of the above can have
explicit rate dependence.
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How bond breakage
leads to material fracture

• Continuum damage is caused by deformation:

• This causes a change in the “stress-strain” curve:

• Need to understand the mathematical conditions
under which discontinuities can emerge.
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Determination of
constitutive parameters
Computational Physics & Mechanics
• Linear microelastic:
• Basic:

♦ Spring constant is fit to wave speed data.
• Advanced:

♦ Can fit wave dispersion data if available.
♦ Bond properties can depend on initial bond

length.
• Microplastic:

• Fit to uniaxial stress-strain curve.
• Bond breakage properties:

• Fit breakage stretch to fracture toughness data.
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Fracture energy = Σ bond breakage energy

Sum over bonds that are broken by the fracture:
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Numerical solution method
for dynamic problems
Computational Physics & Mechanics
• Theory lends itself to mesh-free numerical methods.
• No elements.
• Changing connectivity.

• Brute-force integration in space.

• Solution method has been found to scale well (almost
linear speedup) when run on the Intel Teraflops
computer at Sandia.

• Stable time step does not depend on mesh spacing (!)
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Peridynamic fracture model
is “autonomous”
Computational Physics & Mechanics
• Cracks grow when and where it is energetically
favorable for them to do so.

• Path, growth rate, arrest, branching, mutual
interaction are predicted by the constitutive model
and equation of motion (alone).

• No need for any externally supplied relation
controlling these things.

• Any number of cracks can occur and interact.
• Interfaces between materials have their own bond

properties.
1/29/0210 of 22/home/sasilli/emu/aro1/
vg.frm



1/29/02sas

• Sam
ra
• .

w of crack tip

tional theory

fa

Mode-III crack tip field

• Sam
ra
• .

w of crack tip

tional theory

fa
/home/

• C

Sur

• C

Sur
Computational Physics & Mechanics

11 of 22illi/emu/aro1/vg.frm

e equations are applied everywhere.
ck faces have cusp shape near tip.
No need for additional hypotheses (e.g. Barenblatt)
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Dynamic brittle fracture
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tching of a PMMA plate1

Fineberg and M. Marder, Physics Reports 313 (1999) 1-108
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Dynamic fracture in a tough steel:

e fringes

 crack angles.
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Kalthoff-Winkler experiment

Simulated MoirCrack paths

Notches

Maraging steel plate

• Code predicts correct
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Perforation of thin ductile targets

• Pea :1

N
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k force occurs at about 0.4ms (end of drilling phase)

ot all of the target is shown.
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Dynamic fracture in a balloon
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Nonhomogeneous materials:
Perforation of reinforced concrete

Exit craterDamage on surface

Exit debrisPullout damage
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Nonhomogeneous materials:

• Mod
/home/
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Perforation of a fabric

el includes fiber breakage, contact, and adhesion:
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Nonhomogeneous materials:
Fracture in a composite unit cell

• Crack path, growth, and stability depend only on material properties.
• No need for separate laws governing crack growth.

Initial condition Weak interface

Weak matrix Weak fiber
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Layered material example:
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Where does failure first occur?
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rfaces have half the strength of the layers.

Built-in edge Free

Rigid,
constant veloci

(Cantilever)



1/29/02sas

Initial failure site and mode
/home/
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depends on loading rate

Low rate

High rate

Damage contours

Initial failure
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Correspondence with
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atomic-scale physics

 a constitutive model be derived rigorously from an 
sical description?
Classical theory: people have been trying for a long
Peridynamic theory may be a more natural way
to do this because of its similarity to molecular
dynamics.

♦ This is currently being attempted by
Bhattacharya (Caltech) and Abeyaratne
(MIT).

May lead to a good way to do multiscale
modeling.



Conclusions
Computational Physics & Mechanics
• Method appears to have the potential to model:
• Heterogeneous materials of great complexity.
• Complex fracture systems without the need to

keep track of each crack.

Possible research directions
• Mechanics of heterogeneous materials

• Understand how failure progresses from one
material to another.

• Improved material models.
• Validation against interface crack data.
• Fatigue cracks.
• Multiscale modeling.
• Learn how to do complex material systems.

• Theory and numerical solutions
• Improved solvers.

♦ Multigrid, iterative, implicit, etc.
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